
  
 

 
 

 
A tropical cyclone intensity model based on the conditional 

generative adversarial network 
 
 

Xu Hong 1, Liang Hu 2, Ahsan Kareem 3 
  
1 School of Civil Engineering, Hefei University of Technology, Hefei, China, xhong@hfut.edu.cn 

2Nathaz Modeling Laboratory, University of Notre Dame, South Bend, peettr@gmail.com 
3 Nathaz Modeling Laboratory, University of Notre Dame, South Bend, kareem@nd.edu 

 
 
SUMMARY: (10 pt) 
A tropical cyclone (TC) intensity evolution model is proposed by utilizing the conditional Wasserstein generative 
adversarial network with gradient penalty (CWGAN-GP). In this model, the change of TC intensity over six hours is 
treated as a random variable conditional on the TC state at the previous step and environment (e.g., vertical wind 
shear and sea surface temperature). The CWGAN-GP is used to train a generator which represents the conditional 
probability distribution of TC intensity change. The model is trained with 1010 historical TCs from the western 
North Pacific basin. Numerical results indicate that the proposed model can replicate the probabilistic properties 
such as the strong non-Gaussian marginal distribution of the intensity change and the input-output joint distribution 
and moments between the TC intensity and predictors. 
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1. INTRODUCTION 
A tropical cyclone (TC) is one of the most devastating natural disasters. The probability 
distribution of maximum TC-induced surface wind is fundamentally useful not only in assessing 
the reliability of the engineering systems but also in estimating the economic loss caused by TCs. 
Within the most modelling techniques, the TC intensity prediction model is an essential 
component. For engineering applications, statistical approaches aiming to relate the TC intensity 
change to the environmental variables (Jing and Lin, 2019; Vickery et al., 2000) are commonly 
adopted. Nevertheless, the statistical models would mandate assumptions on the relation between 
the TC intensity change and the input variables. Therefore, the traditional statistical models 
might be suboptimal to fully represent the complex nonlinear feature of TC. On the other hand, 
the deep learning method, that is well recognized as useful tool to represent the nonlinearity, has 
already been applied in the operational forecast of TC intensity (Kozar et al., 2016). The 
literature review indicates that the deep learning methods used in the real-time forecast are 
mainly focused on representing the deterministic relation between the input (environmental 
variables) and output (TC intensity). However, the probabilistic description of the TC intensity is 
imperative in the TC risk assessment, which suggests the need of incorporating uncertainty and 
its propagation with the deep learning approach. To address the preceding concern, this study 
proposes a TC intensity model using the CWGAN-GP (Gulrajani et al., 2017; Mirza and 
Osindero, 2014), which aims to train a multilayer perceptron generator that can represent the 



probability distribution of TC intensity change conditional on the environmental variables. 
Numerical results demonstrate the proposed CWGAN-GP model is advantageous because it can 
well represent probabilistic properties such as the strong non-Gaussian feature of the probability 
distribution of TC intensity change. 
 
 
2. MODEL DEVELOPMENT 
The GWGAN-GP model is comprised of a generator and a critic, both of which are multilayer 
perceptron. The function of the generator is to map a latent standard Gaussian random variable z 
to the TC intensity y conditional on the environmental variables x, i.e., 

 y G z x  (1) 

Where  G    denotes the generator. The critic  D y x  receives values of TC intensity 
change y and the environmental variables x in the input layer and outputs a score to indicate the 
possibility that the input x and y are coming from the real probability space. The generator and 
critic are trained simultaneously in an adversarial manner so that the conditional probability of y 
on x converges to the real one. Specifically, this forms a minimax optimization problem, i.e.,  
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where    is the expectation operator, 
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  is the Euclidean norm operator, 
 1gc r y y y  ,  ~ 0,1U ,  cp y x  is the conditional probability distribution of y  given 

x , and   is the penalty coefficient. 
 
The model consists of two distinct branches to consider the difference between the over-ocean 
and over-land stages of a TC. The input environmental variables (predictors) include: latitude of 
TC center at the previous and current step (ϕ1, ϕ2), longitude of TC center at the previous and 
current step (λ1, λ2), potential intensity at the previous and current step ( max 1p ，, max,2p ), ocean 
mixed layer depth at the previous and current step (hm,1, hm,2), ocean sub-mixed layer thermal 
stratification at the previous and current step (Γ1, Γ2), translation speed of TC at the previous and 
current step (Vt1, Vt2), 850-250 hPa vertical shear at the previous and current step (S1, S2), natural 
logarithm of the relative intensity (ln I1), central pressure deficit at the previous step ( 1p ), time 
since the TC’s landfall (T1). 1p  and T1 are not considered in the over-ocean branch; the over-
land branch considers ϕ1, ϕ2, λ1, λ2, Vt1, Vt2, S1, S2, 1p  and T1. The data sources of the 
environmental variables are presented in Table 1.  
 
Table 1. Data sources for the environmental variables. 
Data source Variable Data source Variable 
Best track dataset from CMA ϕ, λ, Vt and Δp Twentieth Century Reanalysis S 
COBE-SST dataset Ts NODC World Ocean Atlas hm and Γ 
NCEP/NCAR Reanalysis 1 T0   
 
The historical TCs of western North Pacific basin from 1980 to 2013 is used. The dataset is split 
into the training and validation sets with the ratio of 70% : 30%. The architectures of the 
generator and critic are 16×64×32×16×16×8×1 and 16×64×32×16×16×16×16×16×1, and 
11×32×16×16×8×1 and 11×32×16×16×16×16×8×1 for the over ocean and overland branches. 
This minimax problem can be solved by a mini-batch algorithm (Mirza and Osindero, 2014).  
 
3. RESULS  
A linear regression model is also developed to relate the TC intensity change and the 
environmental variables. Figure 1 shows the PDFs of the simulated and observed intensity 



change for over-ocean and over-land TCs. The close match between the observation and 
CWGAN-GP demonstrates the advantage of the proposed model in reproducing the strong non-
Gaussian probability distribution that could not be well parameterized. The linear regression 
model, however, fails to reproduce the multimodal probabilistic feature. Figure 2 shows the two-
dimensional joint probability distributions between the TC intensity change and environmental 
variables in the over-ocean case, estimated by the observations, CWGAN-GP and linear 
regression model. The visual inspection suggests the CWGAN-GP-based model produces 
patterns in the joint distributions similar to the observations. On the contrary, the pattern in the 
results of the linear regression model is not that close to the observations. Figure 3 compares the 
simulated and observed TC intensity evolution of TYHOON Owen in 1998. It is shown that the 
median curves by the proposed model are in good agreement with the TC observations. 

 

 
 

Figure 1. PDFs of the simulated and observed intensity change 
 

 
 

Figure 2. The two-dimensional joint probability distributions between the TC intensity change and 4 environmental 
variables 

 

(a) over-sea TCs (b) over-land TCs



 
 

Figure 3. Simulated and observed TC intensity of TYPHOON Owen (1982). 
 
 
4. CONCLUSIONS  
This study proposes a CWGAN-GP-based model for predicting the TC intensity evolution. The 
TC intensity is regarded as a random variable conditioned on the predictors (TC state and 
environmental variables). The above investigation results indicate that the proposed model has 
successfully replicated the strong non-Gaussian multi-dimensional probabilistic characteristics 
between the TC intensity evolution and the predictors. The proposed CWGAN-GP model 
presents a useful application to the TC hazard assessment in TC prone areas. 
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